Machine learning models have grown tremendously in recent years, with some having hundreds of billions of data points, and we wonder how big they can get. How do we deploy even bigger models, whether it’s in the cloud or using captive infrastructure? Models are getting bigger and bigger, then are distilled and annealed, and then grow bigger still. In this episode, Dennis Abts of Groq discusses the scalability of ML models with Stephen Foskett and Chris Grundemann. HPC architecture and concepts are coming to the enterprise, enabling us to work with unthinkable amounts of data. But we are also reducing the precision and complexity of models to reduce their size. The result is that businesses will be able to work with ever-larger data sets in the future.
Three Questions
- How long will it take for a conversational AI to pass the Turing test and fool an average person?
- Will we ever see a Hollywood-style “artificial mind” like Mr. Data or other characters?
- How small can ML get? Will we have ML-powered household appliances? Toys? Disposable devices?
Guests and Hosts
- Dennis Abts, Chief Architect at Groq. Connect with Dennis on LinkedIn or on Twitter @DennisAbts
- Chris Grundemann, Gigaom Analyst and Managing Director of Grundemann Technology Solutions. Connect with Chris on ChrisGrundemann.com and on Twitter at @ChrisGrundemann
- Stephen Foskett, Publisher of Gestalt IT and Organizer of Tech Field Day. Find Stephen’s writing at GestaltIT.com and on Twitter at @SFoskett
For your weekly dose of Utilizing AI, subscribe to our podcast on your favorite podcast app through Anchor FM and watch more Utilizing AI podcast videos on the dedicated website https://utilizing-ai.com/